Stack
What is a Stack?

— A stack is a linear data structure that works on the principle of
Last In First out (LIFO).

Ex: - A stack of books, the last book which you kept on the top
would be the first book which you pick up.

e To add an element on top is called Push.

e Removing an element from top is called Pop.
e To check if the stack is empty or not IsEmpty.
e To check if the stack is full or not IsFull.

|6 |-
(5]- push
@~ Ppush) L
@“\ Push i 4 4
@-\ Push E 3 3
Push y 2 2 5 3
(1] 1 (1] 1 1
~=[6
Pop ,/’""'@
5 [POp //___...E]
4 4 [Pop >
3 3 (@] i -
2 2 2 2 { Pop
1 1 1 1 [1]

How does it work?

» We use a pointer called Top which keeps track of the
topmost element.

» On Pushing an new element we increment the value of Top
by 1.

» On Popping out an element we decrease the value by 1.

» Top =-1 indicates that the stack is empty.

Implementation:

#tinclude<stdio.h>
#tinclude<stdlib.h>

Stack

*a;
top;
size;
}s
Stack STACK;
STACK createStack(n)
{
STACK stk;
stk.a = (*) malloc(
stk.top = -1;
stk.size = n;
return stk;

isEmpty(STACK *stk)
return stk->top == -1;
isFull(STACK *stk)

return stk->size -1 == stk->top;

push(STACK *stk, val)

if(isFull(stk))

{
printf("\nStack Overflow!");

return;

}
stk->a[++(stk->top)] = val;

pop(STACK *stk)

if(isEmpty(stk))

{
printf("\nStack Underflow!");

return;

}
printf("\nPopped element : %d ",stk->a[(stk->top)--]);

display(STACK *stk)

if(isEmpty(stk))

{
printf("\nStack is empty.");
return;

i
printf("\nContents of stack :\n");
for(i = stk->top; 1 >= @; i--)
{

printf("\n%d",stk->a[i]);

}
printf("\n");

main()

d, ch,n ;
STACK stk;
printf("\nEnter your required size :
scanf("%d", &n);
stk = createStack(n);
while(1)
{
printf("\nl. Push");
printf("\n2. Pop");
printf("\n3. Display");
printf("\n@. Exit");
printf("\nEnter your choice : ");
scanf("%d", &ch);
switch(ch)
{
case 1:
printf("\nEnter your data to push into stack
scanf("%d", &d);
push(&stk, d);
break;
case 2:
pop(&stk);
break;
case 3:
display(&stk);
break;
case 0:

return 0;
default:

printf("\nWrong option selected!");

Application:

e We can reverse a word by simply pushing it in a stack and
popping it out.

e The back button in a browser stores all the URLs you have
previously visited in a stack. Every time you visit a new
page, it is added to the top of the stack. Pressing the Back
button removes the current URL from the stack and
accesses the previous URL.

